Nicotinic acetylcholine receptor subtypes involved in facilitation of GABAergic inhibition in mouse superficial superior colliculus.
نویسندگان
چکیده
The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we examined current responses induced by ACh in GABAergic and non-GABAergic sSC neurons using in vitro slice preparations obtained from glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice in which GFP is specifically expressed in GABAergic neurons. Brief air pressure application of acetylcholine (ACh) elicited nicotinic inward current responses in both GABAergic and non-GABAergic neurons. The inward current responses in the GABAergic neurons were highly sensitive to a selective antagonist for alpha3beta2- and alpha6beta2-containing receptors, alpha-conotoxin MII (alphaCtxMII). A subset of these neurons exhibited a faster alpha-bungarotoxin-sensitive inward current component, indicating the expression of alpha7-containing nAChRs. We also found that the activation of presynaptic nAChRs induced release of GABA, which elicited a burst of miniature inhibitory postsynaptic currents mediated by GABA(A) receptors in non-GABAergic neurons. This ACh-induced GABA release was mediated mainly by alphaCtxMII-sensitive nAChRs and resulted from the activation of voltage-dependent calcium channels. Morphological analysis revealed that recorded GFP-positive neurons are interneurons and GFP-negative neurons include projection neurons. These findings suggest that nAChRs are involved in the regulation of GABAergic inhibition and modulate visual processing in the sSC.
منابع مشابه
Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus.
The neurotrophin brain-derived neurotrophic factor (BDNF) is involved in numerous aspects of synapse development and plasticity. The present study was aimed at clarifying the significance of endogenous BDNF for the synaptically driven spontaneous network activity and GABAergic inhibition in the superficial layers of the mouse superior colliculus. In this structure neuron survival is unaffected ...
متن کاملExcitatory and inhibitory circuitry in the superficial gray layer of the superior colliculus.
Stratum griseum superficiale (SGS) of the superior colliculus receives a dense cholinergic input from the parabigeminal nucleus. In this study, we examined in vitro the modulatory influence of acetylcholine (ACh) on the responses of SGS neurons that project to the visual thalamus in the rat. We used whole-cell patch-clamp recording to measure the responses of these projection neurons to electri...
متن کاملDifferential agonist inhibition identifies multiple epibatidine binding sites in mouse brain.
The binding of [3H]epibatidine, an alkaloid isolated from the skin of an Ecuadorean tree frog, was measured both in brain regions dissected from mouse brain and in tissue sections. Binding to each of 12 brain areas was saturable, but apparently monophasic; no indication of multiple binding sites was obtained. However, inhibition of epibatidine binding by nicotine, acetylcholine, methylcarbachol...
متن کاملNicotinic Acetylcholine Receptor a7 and a4b2 Subtypes Differentially Control GABAergic Input to CA1 Neurons in Rat Hippocampus
Alkondon, Manickavasagom and Edson X. Albuquerque. Nicotinic acetylcholine receptor a7 and a4b2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol 86: 3043–3055, 2001. The hippocampus, a limbic brain region involved in the encoding and retrieval of memory, has a well-defined structural network assembled from excitatory principal neurons and inhibit...
متن کاملEndogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons.
The heart slows during expiration and heart rate increases during inspiration. This cardiorespiratory interaction is thought to occur by increased inhibitory synaptic events to cardiac vagal neurons during inspiration. Since cholinergic receptors have been suggested to be involved in this cardiorespiratory interaction, we tested whether endogenous cholinergic activity modulates GABAergic and gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 6 شماره
صفحات -
تاریخ انتشار 2005